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Torsional oscillations of the large-scale
circulation in turbulent Rayleigh–Bénard

convection
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Measurements over the Rayleigh-number range 108 <∼ R <∼ 1011 and Prandtl-number
range 4.4 <∼ σ <∼ 29 that determine the torsional nature and amplitude of the oscillatory
mode of the large-scale circulation (LSC) of turbulent Rayleigh–Bénard convection
are presented. For cylindrical samples of aspect ratio Γ = 1 the mode consists of
an azimuthal twist of the near-vertical LSC circulation plane, with the top and
bottom halves of the plane oscillating out of phase by half a cycle. The data for
Γ = 1 and σ = 4.4 showed that the oscillation amplitude varied irregularly in time,
yielding a Gaussian probability distribution centred at zero for the displacement
angle. This result can be described well by the equation of motion of a stochastically
driven damped harmonic oscillator. It suggests that the existence of the oscillations
is a consequence of the stochastic driving by the small-scale turbulent background
fluctuations of the system, rather than a consequence of a Hopf bifurcation of the
deterministic system. The power spectrum of the LSC orientation had a peak at finite
frequency with a quality factor Q � 5, nearly independent of R. For samples with
Γ � 2 we did not find this mode, but there remained a characteristic periodic signal
that was detectable in the area density ρp of the plumes above the bottom-plate
centre. Measurements of ρp revealed a strong dependence on the Rayleigh number
R, and on the aspect ratio Γ that could be represented by ρp ∼ Γ 2.7±0.3. Movies are
available with the online version of the paper.

1. Introduction
Understanding turbulent Rayleigh–Bénard convection (RBC) in a fluid heated

from below (see, for instance, Siggia 1994; Kadanoff 2001; Ahlers, Grossmann &
Lohse 2002) remains one of the challenging problems in nonlinear physics. It is well
established that a major component of the dynamics of this system is a large-scale
circulation (LSC) (Sano, Wu & Libchaber 1989; Castaing et al. 1989; Ciliberto,
Cioni & Laroche 1996; Qiu & Tong 2001a; Funfschilling & Ahlers 2004; Sun,
Xia & Tong 2005b; Tsuji et al. 2005). The LSC plays an important role in many
natural phenomena, including atmospheric and oceanic convection (see, for instance,
van Doorn et al. 2000) where it has an impact on climate, and convection in the
outer core of Earth (see, for instance, Glatzmaier, Coe & Roberts 1999) where it is
responsible for the generation of the magnetic field.
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In this paper we consider cylindrical samples, primarily with aspect ratio
Γ ≡ D/L � 1 (D is the diameter and L the height). For these the LSC consists
of a single convection roll, with both downflow and upflow near the sidewall but
at azimuthal locations θ that differ by π. An interesting property of the LSC is
a twisting azimuthal oscillation mode with frequency f0 = ω0/2π, where ω0 is the
angular oscillation frequency. The spatial nature of this mode has become apparent
only recently (Funfschilling & Ahlers 2004; Resagk et al. 2006; Xi, Zhou & Xia 2006).
It is a time-periodic twist of the circulation plane of the LSC that consists, at a given
moment, of a rotation in opposite azimuthal directions in the top and the bottom
half of the sample (Funfschilling & Ahlers 2004). In the present paper the existence of
this mode is confirmed by quite different measurements, its spatio-temporal structure
is further illuminated, and measurements of its properties are extended to a larger
Rayleigh- and Prandtl-number range.

Although the geometrical features of this mode were unclear until recently, a
characteristic frequency was measured much earlier in a number of single-point
determinations of the temperature or the velocity (Heslot, Castaing & Libchaber 1987;
Castaing et al. 1989; Ciliberto et al. 1996; Takeshita et al. 1996; Cioni, Ciliberto &
Sommeria 1997; Qiu, Yao & Tong 2000; Qiu & Tong 2001a , b; Niemela et al. 2001;
Qiu & Tong 2002; Qiu et al. 2004). Depending on the nature of the probe, and
the probe location within the sample, such measurements could determine either the
inverse turnover time 1/T of the LSC or its azimuthal oscillation frequency f0. In
either case, it was found that, within experimental resolution, f0 is equal to 1/T over
a wide parameter range (Qiu & Tong 2002; Funfschilling & Ahlers 2004; Brown,
Funfschilling & Ahlers 2007). The reason for this equality is not known at this
time.

Consistent with the twisting nature of the mode, we detected no oscillations
in the orientation θ0 of the circulation plane at the horizontal mid-plane of the
sample. Instead, θ0 revealed a random time dependence that could be described
well by azimuthal diffusion (Brown, Nikolaenko & Ahlers 2005a; Sun, Xi & Xia
2005a; Brown & Ahlers 2006b; Xi et al. 2006), interrupted occasionally by larger
re-orientations, as discussed before (Brown et al. 2005a; Brown & Ahlers 2006b;
Xi et al. 2006). The out-of-phase oscillations were found in the angles θt and θb

measured at vertical positions L/4 above and below the mid-plane respectively.
Whereas a purely periodic oscillation with characteristic amplitude A should yield
probability-distribution functions pθ ′

b
of θ ′

b = θb − θ0 and pθ ′
t

of θ ′
t = θt − θ0 with

pronounced peaks at angles close to ±A, we found that pθ ′
b

and pθ ′
t

were Gaussian
distributed about θ ′

b = 0 or θ ′
t = 0. Such a distribution can be reproduced by a damped

harmonic oscillator driven by white noise (see, for instance, Gitterman 2005). Thus
the measurements suggest that the existence of the oscillatory mode is a consequence
of the stochastic driving by the small-scale turbulent background fluctuations, and
that it is not a consequence of a Hopf bifurcation of the deterministic system.

Consistent with the conclusions of the previous paragraph, we found that the
oscillatory mode has oscillating but gradually decaying time-correlation functions
and a Lorentzian peak in the height-dependent power spectrum (or structure factor)
S(z, f ) of the LSC orientation θ(z, t). For Γ = 1 and Prandtl number σ = 4.4 we
present results for the height S0, centre frequency f0, half-width σf , and total power
P = πσf S0 of this peak as a function of the Rayleigh number

R =
αg�T L3

κν
(1.1)
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(α is the isobaric thermal expansion coefficient, g the acceleration due to gravity, and
�T the applied temperature difference). Although the half-width increases with R, the
centre frequency increases also with the result that the quality factor Q = f0/(2σf ) � 5
remains nearly independent of R. This suggests that the oscillations will survive up to
values of R well above those available in the laboratory, unless a dramatic event (such
as the disappearance of the LSC itself) intervenes and invalidates a simple power-law
extrapolation of the R-dependences of f0 and σf .

We find that the oscillatory mode exists only for aspect ratios near one. For larger
Γ we do not find the azimuthal oscillation, but instead observe that the plume area
density above the centre portion of the bottom plate oscillates periodically. Thus, as
the aspect ratio changes, the nature of the time-periodic mode of the LSC changes
its character.

2. Experimental apparatus and methods
2.1. The samples

Measurements using water at a mean temperature of 40◦C (Prandtl number
σ ≡ ν/κ = 4.38 and ν = 6.7 × 10−7 m2 s−1) as the fluid were made for the two cylindrical
samples with Γ � 1 described by Brown et al. (2005b) as the ‘medium’ and the ‘large’
sample. The top and bottom plates of both were made of copper. The Plexiglas
sidewall had a thickness of 0.32 (0.63) cm for the medium (large) sample. The samples
had L(D) = 24.76 (24.81) and 50.61 (49.69) cm respectively. Rayleigh numbers were
determined from temperature measurements with five thermometers imbedded in each
of the top and bottom plates.

Measurements using methanol with σ = 6.0 and ν = 5.79 × 10−7 m2 s−1

or 2-propanol with σ = 28.9 and ν = 1.77 × 10−6 m2 s−1 as the fluid were made in three
smaller cylindrical samples. They each had a 6.35 mm thick aluminium bottom plate
with a mirror top surface and a 3.15 mm thick sapphire top plate. A high-density
polyethylene sidewall was sealed to the top and bottom plates by ethylenepropylene
O-rings. One of the smaller samples had Γ � 1 with L (D) = 8.74 (8.66) and had
been used before by Xu et al. (2000) and by Funfschilling & Ahlers (2004). We shall
call it the ‘small’ sample. The other two had L (D) = 4.48 (8.97) and 3.00 (8.96) cm
respectively. They will be referred to as the Γ � 2 and Γ � 3 sample respectively. The
bottom-plate temperature was determined with several thermistors imbedded in the
plate. The top temperature was inferred from measurements of the temperature of
the bath that circulated above the top sapphire plate.

2.2. Sidewall-temperature measurements

For the medium and large sample, three sets of eight thermistors each, equally spaced
around the circumference at the three vertical positions −L/4, 0, and L/4 (we take
the origin of the vertical axis at the horizontal mid-plane of the sample) and labelled
i = 0, . . . , 7, etc. as shown in figure 1, were imbedded in small holes drilled horizontally
into but not penetrating the sidewall. The thermistors were able to sense the adjacent
fluid temperature without interfering with delicate fluid-flow structures. We measured
the temperature of each thermistor with a sampling period of about 2.5 s. Since the
LSC carried warm (cold) fluid from the bottom (top) plate up (down) the sidewall,
these thermistors detected the location of the upflow (downflow) of the LSC by
indicating a relatively high (low) temperature.
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Figure 1. The location of the sidewall thermometers. For the top view only the thermometer
locations for the set located a distance L/2 above the bottom plate (on the horizontal mid-plane,
or z = 0) are shown. The side view indicates the location of all three sets.

To determine the orientation and strength of the LSC, we fitted the function

Ti = T0 + δ cos

(
iπ

4
− θ0

)
, i = 0, . . . , 7, (2.1)

separately at each time step, to the eight temperature readings obtained from the
thermistors at height 0. The fit parameter δ is a measure of the temperature amplitude
of the LSC and θ0 is the azimuthal orientation of the plane of the LSC circulation.
As defined here, the orientation θ0 is on the side of the sample where the LSC is
warm and upflowing and is measured relative to the location of thermometer zero.
We calculated orientations θt and θb and amplitudes δt and δb for the top and bottom
levels at L/4 and −L/4 separately by the same method as for the middle row. Results
from this method of determining the orientation and strength of the LSC have
been reported in several previous publications (Brown et al. 2005a; Ahlers, Brown &
Nikolaenko 2005; Brown & Ahlers 2006a, b)

2.3. Shadowgraph measurements

For the small, Γ � 2 and Γ � 3 samples the LSC movement and plume area
density close to but above (below) the bottom (top) plate were examined by means
of shadowgraph images (de Bruyn et al. 1996) as described in part already by
Funfschilling & Ahlers (2004). Figure 2(a) shows a typical image obtained for the
small sample. This image had a background image taken with �T = 0 subtracted,
and the ratio was re-scaled to cover a suitable grey range. An elongated narrow dark
stripe such as the one near the upper right of the image corresponds to a stripe
of relatively warm fluid. For most of our work the optics was adjusted so as to
emphasize the relatively warm plumes near the bottom plate. Cold plumes near the
top plate are also discernible in the figure, but provide a relatively weaker bright
signal. The two types of plumes are readily separated by image processing.

When the sample axis is parallel to the gravitational acceleration, the LSC
orientation θ0 meanders nearly randomly in the azimuthal direction (Sun et al.
2005a , Brown & Ahlers 2006a, b; Xi et al. 2006) on time scales much longer than
the oscillation period. Some measurements were made under these conditions, but
for others the sample was tilted by an angle β � 1◦ relative to gravity. This led to a
strongly preferred azimuthal orientation of the LSC circulation-plane (Ahlers et al.
(2005); Brown et al. (2005a); Brown & Ahlers 2006b). In figure 3 the coordinate
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(a) (b)

Figure 2. (a) Background-image-divided shadowgraph image of the small sample (Γ = 1)
with 2-propanol at a mean temperature of 40◦C. The Rayleigh number was R = 7.8 × 108. (b)
A binary rendering of the image in (a) obtained by applying a threshold and inverting the
grey scale. The white circle illustrates the area used for the plume area-density measurements.
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Figure 3. Schematic illustration of the coordinates used when the sample was tilted by an
angle β � 1◦ relative to gravity.

system relative to the tilt direction is illustrated. For the small tilt angle used the
shadowgraph measurements did not resolve any influence of the tilt on the properties
of the oscillatory mode.

2.3.1. Plume-velocity measurements

For the small sample (Γ = 1) the speed sp and direction θp of the plume motion
was determined from spatial cross-correlation functions

C(δr, t) = 〈I (r, t)I (r + δr, t + δt)〉
between two images separated in time by an interval δt . Here r is the two-dimensional
position vector, t the time, and 〈. . .〉 indicates a spatial average. The method is
illustrated in figure 4. Two images separated in time by δt = 0.9 s (a and b) are shown.
Each contains a dominant highly elongated plume. To a good approximation the
plume moves in the direction of its long axis. This alignment of plumes by a shear
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Figure 4. (a, b) Two background subtracted and re-scaled shadowgraph images separated in
time by δt = 0.9 s. (c) A central square section of (a). (d, e) One-bit rendering of the square
sections from (a) and (b). (f ) Spatial cross-correlation functions between images such as (d)
and (e), with several different time delays δt ranging from zero to 1.5 s (the origin is indicated by
a small black dot). The fluid was methanol at a mean temperature of 40◦C and R = 4.6 × 108.

flow is a well-known phenomenon and consistent with stability analysis for convection
rolls in the presence of shear (Kelly 1994).

A central square (figure 4c) was extracted and converted to a one-bit image showing
the plumes as black and most of the rest of the sample as white (figure 4d , e). The
cross-correlation function between two such central squares, separated in time by
various values indicated in the figure, are shown in figure 4(f ). For δt = 0 s there is
the auto-correlation function which has a maximum at r = 0. Various time delays
give various displacements of this peak, by an amount δr which, together with δt ,
gives the plume velocity vp . The magnitude of vp gives the plume speed sp , and its
direction is taken as the direction θp of the plume motion. Indeed, θp is seen to be
close to the orientation of the long axis of the plume. This long-axis orientation
tended to fluctuate about θp . It is assumed that the LSC orientation is the direction
of the plume motion. Time series typically contained from 8200 to 20 200 images.

2.3.2. Plume area-density measurements

In order to determine the area density of plume ρp , a threshold equal to half the
average intensity was applied to the background-subtracted images and all pixels
with values above (below) the threshold value were set to zero (one). This isolated
the warm plumes near the bottom plate, and the fraction of the pixels in the plume
images (i.e. the fractional area occupied by their shadowgraph images) could be
determined. This density was calculated using a central circular area of radius about
half that of the cell as shown in figure 2(b), but the results were not very sensitive
to the precise area chosen provided the annulus very near the sidewall (where there
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Figure 5. The large-scale-circulation orientations θb, θ0, and θt calculated separately for the 3
sets of thermistors at R = 3 × 1010 in the large sample. Dotted line: θb from the bottom plane
at a distance L/4 above the sample bottom (z = − L/4). Solid triangles: θ0 from the mid-plane
at a distance L/2 above the sample bottom (z = 0). Solid line: θt from the top plane at a
distance 3L/4 above the sample bottom (z = L/4). One can see that the top- and bottom-plane
orientations oscillate, out of phase with each other, around the mid-plane orientation.

is an accumulation of many rising plumes) was excluded. Although ρp depended
somewhat on the intensity cutoff, its time and Rayleigh-number dependence and
its probability-distribution function showed no significant change over a wide cutoff
range. As defined here, ρp can change either because plumes move into or out of the
measurement area, or because the rate of plume generation changes; the measurement
does not distinguish between these two processes.

3. Experimental results for aspect ratio Γ = 1

3.1. Medium and large sample

In the small sample, the frequency f0 of temporal oscillations in the azimuthal
direction of the motion of plumes across the bottom plate was previously observed
using shadowgraphs (Funfschilling & Ahlers 2004). We can observe the same
oscillations in the medium and large samples by looking at time series of the LSC
orientations θt , θ0, and θb at different heights. A short section of a much longer
time series at the three heights is shown in figure 5 for R = 3 × 1010 in the large
sample. While the orientation given by each data set contains erratic motion, there is
a tendency for the orientations at the top and bottom planes to oscillate out of phase
with each other around the mid-plane orientation.

Power spectra of the three time series for θi(t), i = t, 0, b are shown in figure 6. Peaks
representing oscillations are clearly seen for the top (θt ) and bottom (θb) orientations,
but for the mid-plane (θ0) the spectrum gives no hint of oscillations. It is interesting
to note that even a small misalignment of the sample relative to gravity, by 10−2 rad
or less, will lead to oscillations also at the mid-plane. In several experiments by others
the sample was deliberately tilted slightly in order to limit the diffusion of the LSC
orientation to a small angular range, and caution is in order when results for the
torsional mode are compared with measurements under those conditions. We have
carried out an extensive study of the influence of a tilt angle on the LSC dynamics,
and will report on this in a separate publication.
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Figure 6. The smoothed power spectra of the three angles θi(t) for R = 3 × 1010 from the
large sample. Triangles: θ0. Circles: θt . Squares: θb .
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Figure 7. The large-scale-circulation orientations with the meandering of θ0 subtracted out
at R = 3 × 1010 in the large sample. Dotted line: θb − θ0 from the bottom plane. Solid line:
θt − θ0 from the top plane. One can see that the top- and bottom-plane orientations oscillate,
out of phase with each other, around the mid-plane orientation.

The oscillations of θb and θt about θ0 are shown more clearly by the deviations
θt − θ0 and θb − θ0 of the top- and bottom-plane orientations from the mid-plane
orientation; these are shown in figure 7 for the data of figure 5. To reveal the nature
of the oscillations more quantitatively, we compute the cross-correlation functions

gi,j (τ ) = 〈[θi(t) − θ0(t)] × [θj (t + τ ) − θ0(t + τ )]〉 (3.1)

where i and j can each refer to either the top- or bottom-plane orientations θt or
θb, and where 〈...〉 without a subscript represents a time average. Normalized by√

gi,i(0)gj,j (0), these are shown in figure 8 for R = 3 × 1010 and the large sample. The
oscillations in the auto-correlation functions confirm that the top- and bottom-plane
orientations oscillate, and the lack of a large background in the auto-correlations
confirms that the oscillation is really around the mid-plane orientation θ0 and not
around some fixed orientation. The cross-correlation similarly shows oscillations, and
the minimum of gt,b(τ ) at τ = 0 indicates that the top and bottom row oscillations
are out of phase with each other by half a period. The oscillations shown here lead
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Figure 9. Schematic diagram of the LSC oscillation at time t0 when the oscillation is at an
extremum (a), and at time t0 + T/2 (i.e. half an oscillation period later) (b).

to the same picture of an azimuthal twisting, or torsional, oscillation of the LSC as
found by Funfschilling & Ahlers (2004).

In figure 9 we show a schematic diagram that illustrates the nature of the oscillating
mode, with the top and bottom out of phase. This mode can be described by

θ(z, t) = θ0(t) + f (z)θ ′(t) (3.2)

where θ(z, t) is the height-dependent orientation of the circulation plane of the LSC.
If we choose the origin of the vertical axis at the horizontal mid-plane as shown in the
figure, then the oscillation amplitude becomes an odd function of z, i.e. f (z) = −f (−z).
We set f (L/4) = 1 so that θ ′(t) = θi(t) − θ0(t) as shown in figure 7.
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Figure 10. The probability distribution pθ ′ for θ ′ = θb − θ0 (solid circles) and for θ ′ = θt − θ0

(open circles) for R = 3 × 1010 in the large sample. The solid line is a fit of a Gaussian
function to the data near the peak. The fit gave a square root of the variance equal to 0.057,
corresponding to about 20◦.

Elsewhere we have shown that the background dynamics given by θ0(t) is primarily
diffusive, albeit interrupted by various relatively sudden re-orientation events (Brown
et al. 2005a; Brown & Ahlers 2006b). The twist angle θ ′(t) also has an irregular time
dependence. In figure 10 we show the probability distribution pθ ′ as a function of
θ ′ = θi −θ0 with i = t, b. As shown by the solid line in the figure, the peak of pθ ′ can be
fitted well by a Gaussian function. Further away from the peak there are deviations
from the Gaussian form, with the experimental data yielding a somewhat larger pθ ′ .
If the twist could be represented by a simple oscillation with θ ′(t) = A cos(ωt) with a
constant (time-independent) A, then one would expect pθ ′ to have maxima at θ ′ = ±A.
In contrast to this, the measurements indicate a peak at θ ′ = 0. This is consistent with
a time-dependent A(t) with a broad probability distribution pA of A.

Recently Xi et al. (2006) studied the oscillations of the LSC circulation plane by
particle-image velocimetry measurements in a horizontal plane located very near the
top plate of their cylindrical sample with Γ = 1. They measured the peak-to-peak
amplitude 2A(t) and found its average to be in the range from 35◦ to 55◦ with no
clear dependence on R. Although they were not able to see the torsional nature of
this mode by measurements at a single vertical position, they found a Gaussian-
distributed A(t). Their results for the time average 〈A〉 � 22◦ ± 5◦ of A are at least
roughly consistent with our result for the square root of the variance of the azimuthal
displacement θ ′, which we typically found to be near 20◦.

A simple model for θ ′(t) that reproduces a Gaussian pθ ′ is given by the stochastic
differential equation describing a damped driven harmonic oscillator

θ̈ ′ = −bθ̇ ′ − ω2
0θ

′ + g(t), (3.3)

where b is a damping coefficient, ω0 is the known angular oscillation frequency, and
g(t) is a Gaussian-distributed white-noise term. This equation produces oscillatory
motion in appropriate parameter ranges, and it is known that diffusion in a harmonic
well produces a Gaussian position distribution (Gitterman 2005). While we have
no physical reason for using the model (3.3), it is similar in mathematical form to
others used to describe the LSC dynamics (Brown & Ahlers 2006a , 2007, 2008). The
orientation of the LSC has been found to have characteristics of diffusive meandering
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Figure 11. The smoothed power spectra Si,j (f ) of θ ′ obtained from the Fourier transforms of

each of the three correlation functions gi,j (τ ) for R = 3 × 1010 from the large sample. Triangles:
St,b. Circles: St,t . Squares: Sb,b. Lines: a Lorentzian function with a exponential background is
fit to the peak for St,b (dashed line), St,t (solid line), and Sb,b (dotted line).

(consistent with Gaussian-distributed white noise for g(t)) both at the mid-plane
(Brown & Ahlers 2006a; Sun et al. 2005a) and near the top plate (Xi et al. 2006).
The good agreement between the predictions of the model (3.3) and the data for pθ ′

indicates that the existence of the oscillatory mode is a result of the stochastic driving
which we attribute to the small-scale turbulent fluctuations, and that this mode would
decay without the driving.

The random time dependence of θ ′ also leads to the decay of the correlation
functions shown in figure 8. In order to provide a quantitative characterization of
θ ′(t), we show a smoothed power spectrum (the square of the modulus of the Fourier
transform, or the ‘structure factor’) Si,j (f ) of θt −θ0 and θb−θ0 in figure 11. In addition,
the Fourier transform of gt,b(t) is shown. Particularly for Si,j (f ) one sees that there
remain small backgrounds that are monotonically decreasing with f , although these
backgrounds are much smaller than those seen in figure 6 for the spectra of θi . In
addition to the background there is a strong peak at f = f0 for all three spectra.
Its finite width is attributable to the distribution of A(t). We fitted an exponential
background and a Lorentzian peak

Si,j (f ) =
S0

1 + [(f − f0)/σf ]2
+ a exp

−f

b
(3.4)

to the data for Si,j (f ) over the range 0.5f0 <f < 1.5f0 with fitting parameters S0,
f0, σf , a, and b. In figure 11 one sees that the Lorentzian shape gives a good
representation of the data.

In figure 12 we show the Rayleigh-number dependence of the scaled (i.e.
dimensionless) fit parameters S0ν/L2 (the peak height), σf L2/ν (the peak half-
width), and PL = πS0σf (the total power under the Lorentzian peak excluding the
background). The fit parameters for the bottom-plane, the top-plane and the cross-
correlation data were quite similar, and thus in the figure their averages are displayed.
One sees that the width of the peak increases and the height decreases with increasing
R. For the dimensionless height the data from the two samples do not collapse onto
a single curve, as would have been expected because the two samples have the same
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Figure 12. Fit parameters from (3.4) for the power spectra. These results are the averages
obtained from the three spectra shown in figure 11. Solid symbols: medium sample. Open
symbols: large sample. (a) Dimensionless peak height S0ν/L2. The dotted line corresponds to
a power law with an exponent of −0.45. (b) Dimensionless peak half-width σf L2/ν (circles)
and centre frequency f0 (diamonds). The solid (dashed) line corresponds to a power law
with an exponent of 0.55 (0.50). (c) The total power given by the area under the Lorentzian
peak.

aspect ratio. It is not clear to us what physical phenomenon would produce this effect.
Deviations from the Boussinesq approximation (Ahlers et al. 2006, 2007) which could
influence the results at large R come to mind; however, for other properties such as the
centre temperatures of the samples these effects come into play only at much larger
values of the applied temperature differences. For the total power the R-dependences
of S0 and of σf partly cancel, yielding a power with only a weak dependence on R.
As was seen for S0, the data for the two samples do not collapse. The dimensionless
half-width and centre frequency each fall on the same curve for the two samples, as
one would expect for samples of the same Γ and σ . The centre frequency is closely
related to the inverse turnover time, and thus the Reynolds number, of the LSC. This
is discussed in detail elsewhere (Brown et al. 2007).

A question of interest is whether the LSC and/or its oscillations disappear at large
R. As well as looking at the total power of the oscillations, one might consider the
mode to be unresolvable when the width 2σf of the peak becomes significantly greater
than the frequency f0 of the mode, i.e. when the quality factor Q = f0/(2σf ) becomes
significantly less than one. This comparison can be made using the data for f0 and
σf in figure 12(b). A power-law fit to the half-width for R > 3 × 109 yields σf ∝ R0.55,
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Figure 13. The time-average twist displacement θ ′ as a function of δ for R = 3 × 1010 in the
large sample. Solid line: power-law fit to the data.

whereas such a fit to f0 yields f0 ∝ R0.50. In our range of R the half-width is about
1/10 of the frequency as seen in figure 11, i.e. Q � 5. The closeness of the effective
exponents for the two parameters implies that an extrapolation of the width to larger
R remains small compared to the extrapolated frequency over a very large range
of R, and thus that Q is nearly independent of R. This suggests that the torsional
oscillation will not die out at any R obtainable in the laboratory owing to the spectral
width becoming larger than the peak frequency unless the observed R-dependences
change dramatically at higher R.

To gain some more insight into this mode, we bin the data based on the value
of δ and plot the average magnitude of the twist displacement |θ ′| as a function of
δ at the mid-plane in figure 13. A power-law fit over the range 0.35 � δ/〈δ〉 � 1.9
gives |θ ′| ∝ δ−1.24. Since we do not find any corresponding oscillations in δ, this
relationship indicates that the amplitude of oscillations in θ ′ decreases strongly with
increasing δ. It suggests that this scaling law is similar to one found for the rotation
rate |θ̇0| (Brown & Ahlers 2006b).

3.2. Small sample

3.2.1. On the nature of plumes

The nature of the relatively warm (cold) localized volumes of fluid, also known as
‘plumes’, that are emitted by the bottom (top) boundary layer has been investigated
numerous times, in most cases by using the shadowgraph method. This method
detects the integral along the path of observation of the refractive-index variations
orthogonal to that path. When viewed from above (Tanaka & Miyata 1980; Zocchi,
Moses & Libchaber 1990; Gluckman, Willaime & Gollub 1993; Verzicco 2002;
Funfschilling & Ahlers 2004; Haramina & Tilgner 2004; Puthenveettil & Arakeri
2005; Zhou, Sun & Xia 2007) plumes have generally given the appearance of structures
that are localized in only one horizontal direction and extended in an orthogonal
horizontal direction. These structures often are referred to as ‘sheet’ plumes, although
this term may be misleading because their two-dimensional extent does not seem to
be established. We prefer to call them ‘line’ plumes because it appears more likely to
us that they are one-dimensional excitations in the marginally stable boundary layers.

Examples of plume visualizations taken from above have been shown in figures 2
and 4. Four additional examples are shown in figure 14 for several values of R, and
movies showing the dynamics for two of these examples are available with the online
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(a) (b)

(c) (d)

Figure 14. Shadowgraph images for the small Γ = 1 sample with methanol at a mean
temperature of 40◦C. (a) R = 5.7 × 107. (b) R, = 1.2 × 108. (c) R = 2.3 × 108. (d) R = 4.6 × 108.
Movies corresponding to (b) and (d) are available with the online version of the paper.

version of this paper. A plume near the bottom plate appears as a narrow elongated
relatively dark stripe. Since, to lowest order, the shadowgraph method under certain
conditions yields the vertical average of the horizontal Laplacian of the refractive-
index (and thus of the temperature) field (Rasenat et al. 1989; de Bruyn et al. 1996;
Trainoff & Cannell 2002), such a dark stripe is generally framed on each side by an
even more narrow light stripe. This entire structure then corresponds to a line plume.
Analogous bright lines flanked by dark ones correspond to cold line plumes near
the top, but in our work these were made less prominent by appropriate adjustment
of the optics. Since the structure is viewed from above, we can have no direct
information about its vertical extent. Thus, it could indeed be a sheet-like structure
with significant vertical extent, or it could be a line structure with a predominantly
horizontal orientation.

However, these structures are generally not observed in shadowgraphs taken in
the horizontal direction (Zocchi et al. 1990; Moses et al. 1991; Moses, Zocchi &
Libchaber 1993; Ciliberto et al. 1996; Zhang, Childress & Libchaber 1997; Du &
Tong 1998; Qiu & Tong 2001 b; Shang et al. 2003; Xi, Lam & Xia 2004), where
plumes usually have the appearance of lines, often emanating from and extending
away from the boundary layer and terminating in a mushroom-shaped cap. We shall
refer to these structures as ‘mushroom plumes’. Since line plumes do not appear in
lateral observations, it appears that they are confined to the immediate vicinity of the
bottom or top boundary layer where visualization from the side becomes difficult.
The mushroom plumes are found in transverse observations primarily in the lower
or upper portion of the sample, but often well separated from the bottom or top
boundary layer. They are swept laterally by the LSC toward the sidewall. Near the
sidewall they rise or fall owing to their buoyancy. From all of these observations
the picture emerges that plumes are born as line excitations of the boundary layers,
extended in one horizontal direction only and having initially very little if any vertical
extent. These excitations are also swept laterally and in very close proximity to the
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Figure 15. (a) The plume direction θp and (c) density ρp , and their correlation functions
(b) Cθ (τ ) and (d) Cρ(τ ), as a function of time t or τ : Γ = 1 with 2-propanol and R = 7.8 × 108.
(e–h) corresponding plots for Γ = 2 with 2-propanol and R = 1.5 × 108.

boundary layer by the LSC. In the presence of the LSC they orient themselves with
their long axis in the direction of the LSC. This alignment phenomenon is well
known in other contexts, where convection rolls align their axes with a prevailing
wind or in the direction of a shear (for a review, see for instance Kelly 1994). At
some point along their path, and especially when impinging upon the sidewall, line
plumes separate from the boundary layer and evolve into mushroom plumes with
their characteristic mushroom-shaped heads. This process leaves the sample centre
relatively free of plumes. Consequently observations from the top and not too close to
the sidewall reveal primarily the line plumes very near the top and bottom boundaries.

3.2.2. Plume-direction oscillation and plume area density

As reported before from experiments using methanol (Funfschilling & Ahlers 2004),
the azimuthal direction θp(t) of the lateral motion of plumes near the top or bottom
plate oscillates in time. This is illustrated in figures 15(a) and 15(b) for a Rayleigh
number of 7.8 × 108 using 2-propanol as the fluid. Figure 15(a) gives a short segment
of a much longer time series of θp(t). The signal is quite noisy because occasionally
there are too few or no plumes present and the calculated cross-correlation function
between successive images (see figure 4) does not reflect plume motion. Although an
algorithm could have been developed to eliminate these spurious points, it turned out
that the time correlation-function

Cθ (τ ) = 〈θp(t)θp(t + τ )〉t (3.5)
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shown in figure 15(b) clearly reveals the oscillations and shows that they remain
coherent over a long time period. We assume that the plume motion is slaved to the
motion of the LSC and that θp closely reflects the LSC flow direction θ(±L/2, t) (see
(3.2)) near the top and bottom plates. The same oscillations have been found also
in velocity measurements using air (Resagk et al. 2006) as the fluid. Simultaneous
measurements for methanol using the top (bright) and bottom (dark) plumes revealed
that the oscillations near the top and bottom plate are out of phase with each
other by π (Funfschilling & Ahlers 2004), consistent with the sidewall-temperature
measurements reported above in § 3.1 and shown in figure 8.

The results for θp lead to a power spectrum (not shown here) similar to those of θt

and θb in figure 6, with a pronounced peak centred at a characteristic frequency f0

which corresponds to the inverse turnover time of the LSC. The Reynolds numbers
corresponding to f0 already have been discussed by Brown et al. (2007).

The area density of plumes ρp(t) is illustrated in figure 15(c). One sees that ρp

varied irregularly with time, with no obvious oscillatory component. This is borne
out by the time auto-correlation function of ρp , which is shown in figure 15(d) and
which meanders non-periodically about zero.

In figure 16 we show the probability-density functions (PDF) of θp(t) and of the
density ρp(t) for the example of figure 15. These functions show an unremarkable
Gaussian distribution. Such a distribution has been noted (Zhou et al. 2007) with
regard to other features of plumes in turbulent RBC.

The oscillation amplitudes of θp can in principle be estimated from the power
spectrum of θp in a manner similar to that employed to obtain the data in figure 12
for θt and θb. However, the signal-to-noise ratio was considerably smaller for this
method than it was for the sidewall-temperature measurements, and no definitive
statement about the Rayleigh-number dependence of the amplitude could be made.
Thus we only mention that typical values were in the range from 0.3 to 0.7 rad for
5 × 108 <R < 3 × 109, both for 2-propanol and for methanol.

4. Results for aspect ratios Γ > 1

For the aspect ratios Γ = 2 and Γ = 3 the oscillations of θb were very weak or absent
entirely. This is illustrated in figure 15(e–h) for Γ = 2 and 2-propanol. Figure 15(e)
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Figure 17. (a) The plume area-density above the bottom plate as a function of the Rayleigh
number R. Solid circles: Γ = 1. Solid squares: Γ = 2. Open circles: Γ = 3. (b) The same data
plotted as a function of Γ 2.7R. Solid line: a power law with an exponent of 2.0.

shows part of a time series of θp . No oscillations are apparent to the eye. Figure 15(f)
gives the corresponding correlation function. Whereas it shows a hint of oscillations
at early times, these decay within a few cycles. This stands in stark contrast to the
Γ = 1 case where Cθ shows little or no decay over the time interval shown. On the
other hand, for Γ = 2 the density of plumes (figure 15g) clearly oscillates. These
ocillations are more clearly revealed by the correlation function in figure 15(h). This
behaviour again stands in contrast to the Γ = 1 case where Cρ showed no periodic
component at all. The oscillations of ρp were found for all Rayleigh numbers above
R � 2 × 107 for aspect ratio 2 and R � 1.5 × 107 for aspect ratio 3. The oscillation
amplitudes of the densities were quite large (typically 50% of the mean value 〈ρp〉).
In spite of the difference in the temporal structure between Γ = 1 on the one hand
and Γ = 2 and 3 on the other, the PDFs of both θp and ρp were very similar for
the two categories. We do not have any information about the geometrical features
of the oscillating mode for the larger Γ cases. However, the difference presumably is
associated with a major change in the structure of the flow.

Finally, in figure 17(a) we show the area density of the plumes above the bottom
plate as a function of R for all three samples with 2-propanol. The data for the
three aspect ratios fall on well separated curves. Interestingly, they essentially collapse
onto a single curve when plotted against Γ 2.7R, revealing a strong Γ -dependence.
A power-law scaling of ρp with R can be expected only when ρp � 1 because the
density has an upper limit of unity by virtue of its definition. The R-range of the data
over which ρp � 1 is rather small, and thus no effective exponent can be established
with confidence. In addition the apparent plume width revealed by the shadowgraph
method may depend on R. This effect would introduce an additional distortion of the
measured R-dependence. As a guide to the R-dependence, the solid line in figure 17
is drawn with a slope of 2.

5. Summary and conclusions
In this paper we presented a detailed account of shadowgraph measurements, in part

reported briefly before (Funfschilling & Ahlers 2004), of the azimuthal orientations
θp of plume motions across the top and bottom plates of turbulent samples of fluid
in cylindrical containers and heated from below. These data are for aspect ratios
Γ from 1 to 3. It is argued that θp reflects the orientation of the LSC that is
sweeping the plumes across the plates. For Γ = 1 the data revealed an azimuthal
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LSC oscillation that had been shown before (Funfschilling & Ahlers 2004) to be
a twisting mode of the LSC circulation plane, with the top and bottom halves
oscillating out of phase by π. For Γ = 2 and 3 this mode was not present or extremely
weak.

In addition to the results for θp , shadowgraph measurements for the plume area
density ρp near the centre of the bottom plate are reported. For Γ = 1, ρp varied
irregularly in time but did not reveal the oscillations found in θp . Interestingly, for the
larger Γ = 2 and 3 (where θp did not oscillate) ρp had a strong oscillating component.
The geometrical nature of the mode leading to an oscillation of ρp and only irregular
meandering of θp is not yet revealed by the data.

For Γ = 1 the typical oscillation amplitude of θp was in the range from 0.2 to 0.7
rad. For all three aspect ratios, the shadowgraph measurements revealed that both ρp

and θp had Gaussian probability distributions regardless of the absence or presence
of oscillations. For small ρp (say ρp <∼ 0.2) the plume area density for all three Γ had
a strong Rayleigh-number dependence, but at large R ρp saturated near ρp � 0.4 (we
note that by virtue of its definition ρp < 1). There also was a strong Γ -dependence of
ρp(R). The data for all three Γ could be collapsed onto a unique curve when plotted
against Γ 2.7±0.3R.

We also presented new measurements of the LSC orientation θ(z, t) by a very
different method. These measurements are for two cylindrical samples with Γ = 1 over
the Rayleigh-number range 108 <∼ R <∼ 1011 and for σ = 4.4. In this work we have
determined θb = θ(−L/4, t), θ0 = θ(0, t), and θt = θ(+L/4, t) (we take the origin of the
z-axis at the horizontal mid-plane) from measurements of the azimuthal dependence
of the sidewall temperatures. The results confirm the shadowgraph observations in
that they also show a torsional, i.e. twisting, mode of the LSC circulation plane,
with θb(t) and θt (t) oscillating out of phase by π and θ0 revealing no oscillatory
contribution at all. Although each angle by itself shows a diffusive time evolution,
with an oscillatory component added for θt and θb, the differences θ ′

i = θi − θ0, i = b, t,

reveal almost no meandering background at all, indicating that the oscillations are
about θ0 rather than about some other fixed angle.

For a purely sinusoidal oscillation of θ ′ with characteristic amplitude A one expects
a probability distribution pθ ′ of θ ′ that is strongly peaked near θ ′ = ± A. Instead, we
found that pθ ′ has a maximum at θ ′ = 0 and that it has a Gaussian shape when |θ ′|
is not too large. This result is reproduced by the stochastic second-order differential
equation that describes a damped harmonic oscillator driven by random noise. This
equation for θ ′(t) is reminiscent of the equations that we discussed elsewhere (Brown &
Ahlers 2006a , 2007, 2008) to explain the rapid re-orientations of the LSC orientation
and the influence of Earth’s Coriolis force on the LSC. In those equations the
physical origins of all terms were clear, and the small-scale turbulent background
was represented by a phenomenological additive noise term corresponding to
experimentally determined diffusivities. In the present case we assume that the required
stochastic term likewise represents the background fluctuations, but we do not have
a physical explanation for the origin of the inertial term that is needed in order to
reproduce the oscillations. An important conclusion to be drawn from pθ ′ is that the
oscillations would not exist in the absence of the stochastic driving, and thus that
they are not the result of a Hopf bifurcation of the deterministic system.

The oscillations of θb and θt lead to a peak at finite frequency of the power spectrum
of θi − θ0 (i = t, b), with only a small broad background contribution. The peak could
be described by a Lorentzian function. We presented data for the height S0, half-width
σf , centre frequency f0, and total power PL = πS0σf of this peak. We found that the
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height S0 of the peak decreased and that the width σf increased with increasing
R. Although both f0 and σf increase with R, the quality factor f0/(2σf ) is nearly
independent of R, suggesting that the oscillatory mode will survive up to R-values
well beyond those of the present data unless a dramatic change in the behaviour of
the system intervenes.

An interesting question is how the oscillatory mode comes into existence as R

increases from small values. We do not have data at sufficiently small R to provide
an answer, but this issue was addressed by Qiu & Tong (2001 b) using measurements
at σ = 5.4. From velocity and temperature data at single points in the sample, and
correlation functions between them, they found a sharp transition at Rc � 5 × 107 from
a small-R state without coherent oscillations to another at larger R that exhibited
the oscillations. At Rc the frequency observed by these authors had a finite value.
Since we argued above that the oscillatory mode is not created via a Hopf bifurcation
but instead is a consequence of the stochastic driving by the small-scale turbulent
fluctuations, we interpret the observations of Qiu & Tong (2001 b) of a suden onset to
imply that the driving begins abruptly as the Rayleigh number increases through Rc.
Obviously, additional measurements will be required in order to clarify this important
aspect of the LSC.

This work was supported by the US National Science Foundation through Grant
DMR07-02111.
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