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Ability of a low-dimensional model to predict geometry-dependent
dynamics of large-scale coherent structures in turbulence
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We test the ability of a general low-dimensional model for turbulence to predict geometry-dependent dynamics
of large-scale coherent structures, such as convection rolls. The model consists of stochastic ordinary differential
equations, which are derived as a function of boundary geometry from the Navier-Stokes equations [Brown
and Ahlers, Phys. Fluids 20, 075101 (2008); 20, 105105 (2008)]. We test the model using Rayleigh-Bénard
convection experiments in a cubic container. The model predicts a mode in which the alignment of a convection
roll stochastically crosses a potential barrier to switch between diagonals. We observe this mode with a measured

switching rate within 30% of the prediction.
DOI: 10.1103/PhysRevE.93.023117

I. INTRODUCTION

Large-scale coherent flow structures in turbulence, such
as convection rolls in the atmosphere, are ubiquitous and
can play a dominant role in heat and mass transport. A
particular challenge is to predict dynamical states and their
change with different boundary geometries, for example, in
the way that convection rolls in the atmosphere can be affected
by topography such as mountain ranges [1]. However, the
Navier-Stokes equations that describe flows are impractically
difficult to solve for turbulent flows, so low-dimensional
models are desired.

It has long been recognized that the dynamical states
of large-scale coherent structures are similar to those of
low-dimensional dynamical systems models [2] and stochastic
ordinary differential equations [3—6]. However, such models
tend to be descriptive rather than predictive, as parameters
are typically fitted to observations, rather than derived [7]. In
particular, dynamical system models tend to fail at quantitative
predictions of new dynamical states in regimes outside where
they were parametrized. In this paper we demonstrate a
proof of principle that a general low-dimensional model
can quantitatively predict the different dynamical states of
large-scale coherent structures in different geometries.

The model system is Rayleigh-Bénard convection, in which
a fluid is heated from below and cooled from above to generate
buoyancy-driven convection [8,9]. This system exhibits robust
large-scale coherent structures that retain the same organized
flow structure over long times. For example, in upright
cylindrical containers of aspectratio 1, a large-scale circulation
(LSC) forms. This LSC consists of temperature and velocity
fluctuations that, when coarse-grain averaged, collectively
form a single convection roll in a vertical plane [10], as shown
in Fig. 1(a). Various dynamics of the LSC have been reported,
including spontaneous meandering of the orientation 6, in a
horizontal plane and an advected oscillation that appears as a
torsional or sloshing mode [11-17]. As an example of different
dynamical states in different geometries, if instead the axis of
the cylinder is aligned horizontally, 6y tends to align with
the longest diagonals of the cell and oscillates periodically
between diagonals and around individual corners [18].
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While there are several low-dimensional models for LSC
dynamics [19-22], only one by Brown and Ahlers has made
predictions dependent on container geometry [3,23,24]. The
model consists of a pair of stochastic ordinary differential
equations, using the empirically known robust LSC structure
as an approximate solution to the Navier-Stokes equations.
The resulting dynamical equation for 6y is
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The first term on the right-hand side is a damping term
with t; a damping time scale. A separate stochastic ordinary
differential equation describes the fluctuations of § around its
stable fixed point 8y [23]. Here f; is a stochastic forcing term
representing the effect of small-scale turbulent fluctuations and
is modeled as Gaussian white noise with diffusivity Dj. This
model is mathematically equivalent to diffusion in a potential
landscape V,(6o). The potential V, represents the pressure of
the sidewalls acting on the LSC and is given by
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where w, is the turnover frequency of the LSC and H is the
height of the container [24]. This includes an update to [24] of
the numerical coefficient for aspect ratio 1 containers [18]. The
notation (- - - ),, represents a uniformly weighted smoothing of
the potential over the width y = 7 /10 of the LSC [18]. Here
D(0y) is the distance across a horizontal cross section of the
cell, as a function of 6y, illustrated in Fig. 1(b). Thus D(6y),
and consequently V, and Eq. (1), can be predicted explicitly
for any system geometry, with the caveat that in this form of
the model the geometry must support a single-roll LSC.

This model and its extensions have successfully described
all of the known dynamics of the LSC [3,16,18,23-26]. Since
the model is derived from the Navier-Stokes equations, the
model terms can be predicted and are typically accurate within
a factor of 2. The only required fit parameter is D, which
can be fitted to independent measurements [23]. The model
has described dynamics dependent on the geometric potential
V, [18], although in that case a correction was made to V,
for the nonzero width of the LSC, and another parameter was
fitted to better describe data. Since the model was adjusted
to describe results after they were observed, it has not yet
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FIG. 1. (a) Side view of the LSC, indicated by the dashed line.
Hot and cold features are filled with red and white, respectively.
(b) Top view of a horizontal cross section at midheight of the cubic
container. Thermistor locations on the sidewall are indicated by small
circles. The orientation of the LSC is defined as the angle 6, between
the hot side of the circulation plane (thick solid line) and the vertical
dashed line. The length of the circulation plane across a horizontal
cross section D(6,) determines the model potential.

been shown that the model can predict geometry-dependent
dynamics before their observation.

In this paper we test the model prediction of a switching of
0y between potential wells corresponding to a stochastic cross-
ing of a potential barrier in 6 [24]. While it has been mentioned
that a switching between corners has been observed [27], as far
as we know, no publication has provided quantitative data and
thus no models have been tested. There are also several possi-
ble different types of orientation switching that have been pro-
posed in the literature, including reversals [21], cessations [3],
periodic oscillations between corners [18], and stochastic
crossing of a potential barrier in 8y [23], and it remains to be
determined which occur in a cubic cell. We test the model pre-
diction of stochastic switching in a cubic container that has four
potential wells and four potential barriers AV, of equal height,
shown in Fig. 2 as calculated from Eq. (2). The cubic geometry
prevents a competing periodic oscillation mode, which could
occur if one potential barrier is smaller such that the system
could oscillate in the wider well surrounding two corners [18].
This is the first example, to the best of our knowledge, of testing
a quantitative prediction of a geometry-dependent mode of the
LSC (i.e., the existence and properties of a mode that did not
exist in other geometries studied) without any flexibility or
free parameters in the geometry dependence of the model.
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FIG. 2. Model potential V,(6,) for a cubic cell (2). The vertical
dashed lines indicate the locations of the four corners where the
potential minima occur. Equation (1) describes diffusive fluctuations
of 6 in this potential, which can occasionally cross the barriers AV,
to switch between corners.
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II. METHOD

The cubic container is based on the design of [28].
It has dimensions H = 203.20 mm, L; = 200.38 mm, and
Ly = 199.87 mm, illustrated in Fig. 1. The variations of the
cell dimensions due to bowing of the sidewall, epoxy to seal
gaps and cover thermistors, and holes for filling water are
each less than 0.7 mm. The cell is filled with degassed and
deionized water at a mean temperature of 23.0 °C, for a Prandtl
number Pr = v/k = 6.4 («k is the thermal diffusivity and v is
the kinematic viscosity). We report measurements at Rayleigh
number Ra = ag AT H?/kv = 4.8 x 108 (AT = 3.8°Cisthe
temperature difference between the top and bottom plates,
o is the isobaric thermal expansion coefficient, and g is the
acceleration of gravity). The standard deviation of the plate
temperature over space and time is 0.005AT. The cell is
isolated from room temperature variations as in Ref. [28]. The
cell level is adjusted so that the probability distributions of 6
has four peaks at the four corners with magnitudes within 50%
of each other. We achieved this for a cell within 0.03° of level.

Fluid temperature is recorded by thermistors placed in
blind holes in the acrylic sidewall, within 0.5 mm of the
fluid surface [12]. Three rows of thermistors are located at
heights H/4, H/2, and 3H /4 above the bottom plate as
shown in Fig. 1(a). They are equally spaced in angle 6 as
shown in Fig. 1(b), such that the four corners are located
at 0 = %, %, %, and % rev. The relative error on thermistor
measurements is 2.5 mK, which comes from a combination
of the standard deviation of recorded temperature difference
between thermistors during calibration (0.7 mK), temperature
nonuniformity in the cell during calibration (1.2 mK), inter-
polation errors from fitting calibration temperatures (0.6 mK),
drift of the thermistors between calibration runs (1.6 mK), and
room temperature variations during experiments (1.2 mK).
The LSC can be detected by the hot fluid it pulls up on
one side and the cold fluid it pulls down the other side,
as shown in Fig. 1(a). The thermistor temperatures 7 are
fittedby T = Ty + & cos(6 — 6p) to obtain the LSC orientation
6y and half the horizontal temperature difference §, which
characterizes the strength of the LSC, as in Ref. [12]. Examples
of this fit are shown in Fig. 3.
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FIG. 3. Normalized temperature profiles when 6, = 1/8 rev
(red circles) and 6y = 1/4 rev (open diamonds). The line is the
cosine fitting function from which the normalization parameters are
obtained. The fits are equally good, indicating that the structure of
the LSC is similar at both the potential minimum (6, = 1/8 rev) and
potential maximum (6y = 1/4 rev).
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FIG. 4. Typical time series of (a) the strength § and (b) the
orientation 6, of the LSC. The horizontal dashed lines in (b) indicate
the locations of the four corners in the cubic container. Stochastic
switching of 6, between corners is observed, as predicted [23].

III. RESULTS

A typical time series of the strength 6 and orientation 6,
of the LSC at midplane (H/2) is shown in Fig. 4. Since
0y from all three planes track each other, they are always
in the same potential well at the same time, which is all
that is needed to identify switching, so we only present
results from the midplane. Here 6, meanders erratically as in
cylindrical containers [12,13,18]. The orientation 6 also tends
to align with the corners [dashed lines in Fig. 4(b)], which is
different from upright cylindrical containers and similar to
previous measurements in rectangular containers [27,29-33]
and horizontal cylinders [18]. Such preference is expected
since corners correspond to potential minima (Fig. 2).

We also observe that 6, switches between corners, ap-
parently randomly. The LSC samples all four corners in an
irregular pattern, not just oscillating back and forth between
two corners as observed by Song ef al. [18]. We also observe
that 6y does not tend to change by 1/2 rev during events,
which would correspond to reversals; rather there is a strong
tendency for a change by +1/4 rev with each event. In previous
studies it was found that 6) could reorient quickly due to
cessation and reformation of the LSC, which is characterized
by a drop of the LSC strength § to effectively zero [34]. In the
present study, § fluctuates around its stable fixed point value
8o = 0.124 K without dropping below 0.464, which indicates
that the switching observed here occurs without cessation.
Figure 3 shows a comparison of temperature profiles for
6y = 1/8 and 1/4 rev, which correspond to a minimum and
maximum of the potential, respectively. The fits are equally
good in both cases. Averaged over the entire time series, the
standard deviation between the measured temperature and the
fitis 37 mK for the range 6y = 1/8 £ 1/40 rev (near a potential
minimum) and 41 mK for therange 6 = 1/4 4+ 1/40rev (neara
potential maximum). This indicates that the LSC structure does
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FIG. 5. Probability distribution P(z;/(t;)) of the time intervals
between switching of 6, from one corner to another. The solid line
is the function P(t;/(t;)) = exp(—71;/(t1)) representing a Poisson
(random) distribution.

not change much during the switching events. These qualitative
observations are all consistent with the model prediction of
stochastic switching across potential barriers and inconsistent
with the other proposed switching mechanisms [3,18,21].

To characterize the randomness of the switching, we
measure the distribution of the time intervals t; between
switching events. When counting switching events we want to
avoid counting extraneous events due to the jitter of y around a
potential maximum or minimum. Thus, an event is not counted
as soon as 6 crosses a potential maximum. Rather, for an event
to be counted, 6y must not only cross a potential maximum,
but also cross the orientation of the potential minimum of
a well adjacent to the previous well an event was counted
at. The probability distribution P(t;/(t;)) is shown in Fig. 5,
where (1) is the average time interval between switching. The
fractional error on each point is equal to the inverse square root
of the number of events in each bin. Notably, there is no peak
for 7; > 0, confirming that the switching is not periodic as
observed by Song et al. [18]. The data are consistent with
the exponential function P(7;/(1))) = exp(—rt;/(t1)) shown
as the line in Fig. 5, which represents Poisson statistics, i.e.,
randomly distributed events in time, as predicted for the model
of overdamped diffusion across a potential barrier [24].

For a quantitative prediction, the rate of switching between
corners can be modeled as a fluctuation-driven crossing of a
potential barrier. This was done previously [23] by simplifying
Eq. (1) to the one solved by Kramers [35] by approximating
8§ = &g, which is valid if the fluctuations of § around its stable
fixed point §; are small. In the overdamped limit, the number
of switching events per unit time is given by

A/ CminCmax T§ exp (_ AVg ) 3)

w =
2 Dty

Here ¢, = ISwé /7 and Cpax = 3wi /2 are the curvatures
|d2Vg /d6?| at the minimum and maximum of the poten-
tial, respectively. The potential barrier AV, = %(1 - %)wi
is calculated from Eq. (2) [18]. The damping time scale
75 = 17.5 £ 0.5 s and the diffusivity Dy = (2.37 £0.07) x
10~ rad?/s> are fitted independently to the mean-square
change in 6 over time as in Ref. [23]. The circulation rate
wg = 0.022 £0.003 s~! is obtained by first calculating the
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speed of the LSC as the distance H /4 between two vertically
separated thermistors in the path of the LSC, divided by the
time of peak correlation between their signals (16.6 £ 0.7 s)
and further divided by the path length of the LSC, which is
assumed to be between a rectangular path along a diagonal of
length 2(1 + +/2)H and a nearly ellipsoidal path of length
x(l+ \/E)H /2. With these parameter values and Eq. (3),
the predicted switching rate = (0.9 = 0.6) x 10~* s~!. This
prediction is smaller than the measured switching rate & =
1.3 x 107* s7! (251 events measured over 21.7 days) by 40%,
while consistent within error.

Alternatively, we can predict the parameter value 7; =
26.9 s from the Navier-Stokes equations [23]. This value
is higher than the independently measured value by 54%,
increasing the predicted w by 460%. This example indicates
that the prediction of w is very sensitive to parameter values,
due to the exponential term in Eq. (3). This sensitivity means
that the agreement within 40% for @ implies much better
accuracy of 9% for individual model parameters. For our
variation of cell dimensions of 0.7 mm (0.35%), AV, could
change by 0.95%, causing the predicted w to change by 3.5%.
This confirms that our cell is still uniform enough to compare
to predictions for a cubic cell.

To provide a stricter test of the model, we extend the
prediction of switching rate @ to be a function of § while
still using the dynamics of § from that original model. In
principle, the fluctuations of § around the stable fixed point
8o can affect both the damping and potential terms in Eq. (1).
To account for this, we remove the model approximation of a
fixed § = 8 used in the original calculation of w [Eq. (3)] [23].
We can explicitly write the § dependence into the model
since & varies slowly, i.e., the time scale ts that governs §
is much larger than the time scale 7,4 that governs 6y [23].
Thus, the damping time scale t; in Eq. (3) can be replaced
with 7480/8 as in Eq. (1). In addition, since wy was assumed
to be proportional to § in the original model [23], but Eq. (2)
was originally written with the implicit approximation § = §y,
AV, can be generalized to AV,(8) = %(1 — %)(wa—"(’)a)z. Using
the same overdamped Kramers solution for the barrier crossing
problem as in Eq. (3), the switching rate becomes

minCmax T4 0 3(1)253
o(8) = YEmnem %0 o [_—"’ 3(1 - Z)} o)
218 8Dy 148, 2

This expression represents the rate of switching per unit time
at each value of §.

To compare this prediction with measurements, we calcu-
late the corresponding measured value of w(8) from w(§) =
@ Ps(8)/ P(58), where P(8) is the probability distribution of §
during an entire data set and P;(§) is the distribution of § during
switching events. For each switching event, we use the value
of § the last time that 6y crosses the potential maximum.

Figure 6 shows a comparison of the measured §-dependent
switching rate w(§) and the model prediction from Eq. (4).
The trend of the data is captured well by the model, as the
root-mean-square difference between measured and predicted
() is 50% over three decades of w. The 6 dependence in w(§)
leads to a modified prediction of the average switching rate:
Jo8)P(8)ds = (1.7+1.1) x 107* s™!, which is consistent
with and within 30% of the measured switchingrate @ = 1.3 x
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FIG. 6. Switching rate w(§). Circles show the measurements and
the dashed line is the model prediction from Eq. (4).

10~* s~!. However, this level of accuracy in & is better than
we should expect, since predictions of this model are typically
only accurate within a factor of 2 or 3 due to the approximations
made to obtain Eq. (1) [23], unless model parameters are fitted
to data in nonindependent measurements [36]. Regardless,
the agreement between the predicted and measured w(d) is
exceptionally good for a low-dimensional model, considering
that parameter values 75, Dy, and w, are determined from
independent measurements and the geometry dependence has
no adjustable parameters.

The increase of the switching rate w as § decreases can
be understood in terms of Egs. (1) and (4). Small § means a
weaker LSC, which leads to both smaller damping in Eq. (1)
and potential barriers in Eq. (4). Both of these effects allow
fluctuations to drive the system over the potential barriers more
easily, resulting in a higher w.

One notable advantage of this low-dimensional model is
its ability to get useful information about long-term dynamics
from simulations. The parameters 74, Dy, and wy can be fitted
by data from short-term simulations of only a few turnover
times [23]. Once these parameters are obtained from short-
term measurements, one could predict with high accuracy the
statistics of rare events that occur once in ~100 turnover times,
such as stochastic switching from Eq. (3) or cessations [3],
without performing long-term simulations.

IV. CONCLUSION

To summarize, we observed that LSC orientation 6,
switches between corners by crossing potential barriers in 6y
as a Poisson process, as predicted [23]. The prediction of the
average switching rate & is 30% above the measured value,
within error, while the prediction of w(§) captures the trend in
§ with a root-mean-square difference of only 50% over three
decades of w (Fig. 6). The switching can be understood as
a turbulent-fluctuation-driven crossing of a potential barrier,
where the potential is predicted from the shape of the
sidewall. The switching is more likely to happen when § is
smaller, due to the decrease in both the potential barrier and
damping.

In the bigger picture, the success of the prediction
demonstrates that a low-dimensional turbulence model can
quantitatively predict the existence and properties of a
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dynamical mode that did not exist in other geometries studied,
without any flexibility or free parameters in the geometry
dependence of the model. The geometry dependence of
the model could be predicted without adjustable parameters
because the low-dimensional model is derived from the
Navier-Stokes equations. The key insight that allowed this
derivation was that the robustness of the LSC allows it to be
plugged in as an approximate solution. The remaining barrier
to making predictions of the full model without any adjustable
parameters is to predict the diffusivities that represent turbulent
fluctuations; it remains an open question as to whether a
general form for the stochastic term can be predicted based
on turbulence statistics. This methodology can in principle
be applied to other flows dominated by large-scale coherent
structures. In other systems, the geometry-dependent term

PHYSICAL REVIEW E 93, 023117 (2016)

would have a different functional form, which we have shown
can be predicted explicitly, and additional forcing terms would
be different, so the dynamical equations and corresponding
solutions would also be different, but the approach is one that
potentially could lead to general low-dimensional turbulence
models.
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