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We report on rheometry measurements to characterize the critical behavior in two model shear

thickening suspensions: cornstarch in water and glass spheres in oil. The slope of the shear thickening

part of the viscosity curve is found to increase dramatically with packing fraction and diverge at a critical

packing fraction �c. The magnitude of the viscosity and the yield stress are also found to have scalings

that diverge at �c. We observe shear thickening as long as the yield stress is less than the stress at the

viscosity maximum. Above this point the suspensions transition to purely shear thinning. Based on these

data we present a dynamic jamming phase diagram for suspensions and show that a limiting case of shear

thickening corresponds to a jammed state.
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In Newtonian fluids the viscosity does not change with
an applied shear rate, while non-Newtonian fluids usually
show a decrease of viscosity when sheared faster; i.e., they
shear thin. The opposite behavior, shear thickening, is less
common but can be quite dramatic: beyond a certain shear
rate the viscosity increases potentially by orders of magni-
tude. This behavior is reversible, so the stress relaxes when
the shear is removed. Reported shear thickening fluids are
usually densely packed colloids or suspensions [1–4], for
example, cornstarch in water. Shear thickening is a concern
across a range of industrial processes [2,5] and is of interest
for the ability to absorb energy from impacts [6].

It has been suggested [4,7–18] that shear thickening is
related to the phenomenon of jamming. The concept of a
jamming transition, however, applies to the limit of a
vanishing shear rate and is exemplified by the onset of
glassy behavior with a seemingly diverging viscosity in
molecular liquids, dense packings of colloids, or macro-
scopic granular materials, leading to the appearance of a
yield stress below which there is no flow [19–21]. Shear
thickening, on the other hand, occurs at nonzero shear rate.
While a yield stress has been measured in some shear
thickening fluids [9], no link has been established between
such yield stress and the observed shear thickening behav-
ior. Some shear thickening fluids have been reported to
exhibit seemingly discontinuous jumps in stress with in-
creasing shear rate at high packing fractions, known as
discontinuous shear thickening [8,15,18,22–26]. However,
this discontinuity has not yet been characterized quantita-
tively. A model with soft-shell particles found distributions
of forces between particles similar to those of force chains
in jammed systems [11] but cannot reproduce the dramatic
increases in viscosity with shear rate observed in discon-
tinuous shear thickening. As a result, the connection be-
tween shear thickening and jamming has not been been
made quantitatively.

Here we characterize the stress-shear rate discontinuity
and the relationship to the yield stress through rheological
measurements. This is the first characterization of discon-

tinuous shear thickening for different packing fractions in
non-Brownian suspensions. We find that discontinuous
shear thickening is a limiting behavior which is ap-
proached at a critical packing fraction where the onset
shear rate of shear thickening approaches zero and the
yield stress jumps dramatically. In other words, the limit-
ing case of discontinuous shear thickening corresponds to a
jammed state. We then develop a phase diagram to delin-
eate the shear thickening and jammed regimes.
We present below experimental results from two rather

different hard particle suspensions, cornstarch in water and
glass spheres in mineral oil, to demonstrate the generality
of our results. Cornstarch (average particle diameter of
14 �m) was chosen as a prototypical shear thickener,
while glass spheres (88–125 �m diameter) have the ad-
vantages of better defined particle properties and better
studied packing properties. The starch particles were sus-
pended in water, density matched to 1:59 g=mL by dis-
solving CsCl. Using optical tweezers we found no
attractions or repulsions outside the range of contact rele-
vant in the stress range of the experiments. Measured
starch masses include some water at ambient conditions
of 23 �C and 42% humidity. Glass spheres with hydro-
phobic coating were used to optimize dispersion in mineral
oil (viscosity 58 mPa � s) and minimize the yield stress.
Packing fractions � are based on measured particle and
fluid masses mixed together before shearing.
Measurements were performed in a rheometer using

Couette (inner rotating cylinder of diameter 26.6 mm,
gap of 1.13 mm) or parallel plate (25 mm diameter rotating
top plate) geometries. Care was taken so that no fluid
extended outside the parallel plates so the particles were
confined to the space between the plates by surface tension.
All data presented were taken by controlling the torque T
converted to a bulk shear stress �. The shear rate _� is
defined by the measured rotation velocity over gap size
[27]. We define viscosity by � � �= _�. Samples were
presheared before experiments to ensure repeatability.
Measurements were performed with increasing as well as
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decreasing stress ramps at different ramp rates to check for
hysteresis, thixotropy, and transients. We used measure-
ments for different gap sizes to check for finite size effects,
and different plate surfaces to check for slip. No differ-
ences were found that are significant enough to affect the
conclusions presented here. Since glass spheres are denser
than mineral oil, measurements were performed in the
parallel plate geometry with a gap size of 0.5 mm to
minimize possible sedimentation effects. At this gap size
we confirmed the results are the same as in a density-
matched fluid.

Figure 1 shows stress vs shear rate traces for different
packing fractions. On a log-log plot a slope of 1 corre-
sponds to Newtonian flow (indicated by dashed lines for
reference), a slope between zero and unity corresponds to
shear thinning, while a slope greater than unity signals
shear thickening. The overall steepness of the traces within
the shear thickening region is seen to increase with � and
to approach a vertical line where shear thickening becomes
discontinuous. Another feature is that shear thickening
occurs over an intermediate stress range that varies little
with packing fraction when the yield stress is well below
this range. For stresses either larger than the upper limit of
the shear thickening region or smaller than the shear thick-
ening onset, shear thinning behavior is observed. At lower
� the slopes gradually approach 1 at all stress ranges so
there is a gradual transition to Newtonian flow. The behav-
ior described above is similar to what has been found by
careful measurements in shear thickening colloids [26].
This is notable because it is usually assumed that
Brownian motion and electrostatics are important factors
in shear thickening [3]; both are insignificant for our larger
particles. At sufficiently large �, the traces exhibit a non-
zero stress value in the limit of zero shear rate, i.e., a yield
stress. Given a stress resolution around 10�2 Pa with our
rheometer, this is most clearly seen in the cornstarch data
where the yield stress is larger. The yield stress is seen to
encroach on the shear thickening stress range at high
packing fractions above which there is only shear thinning.

To quantify the stress-strain relationship in the shear
thickening region, we fit the traces locally to a power law

� / �1�� which is equivalent to � / _�1=� but it does not
diverge so it can be fit more conveniently. The parameter �
depends on the packing fraction and corresponds to the
inverse slope of the traces in Fig. 1. Newtonian flow
corresponds to � ¼ 1, and a stress discontinuity corre-
sponds to � ¼ 0. In Figs. 2(a) and 2(b), the � values plotted
are from fits around the steepest portions of the stress-shear
rate traces. For both starch particles and glass spheres, �
approaches zero at a critical packing fraction �c where the
slope of the viscosity curve becomes divergent. Previous
reports have suggested there is a packing fraction above
which the stress-shear rate curve becomes discontinuous
[26], implying the possibility of � ¼ 0 over a range of �.
However, the fact that � only approaches zero at �c

suggests the discontinuity is better thought of as a limiting
behavior of shear thickening. The value of �c is obtained
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FIG. 1 (color online). Shear stress � vs shear rate _� for packing
fractions �, as indicated. (a) Glass spheres in mineral oil.
(b) Cornstarch in water. Dashed lines: slope 1 indicating fixed
viscosity.
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FIG. 2. Evolution of viscosity and yield stress with packing
fraction � for glass spheres in mineral oil (a,c,e) and cornstarch
in water (b,d,f). (a,b) Inverse logarithmic slope � of stress-shear
rate traces in the shear thickening regime, defined by � / _�1=�.
Lower left inset: an example fit of viscosity vs stress on a log-log
scale for � ¼ 0:562. The open symbols represent the fit range.
Upper right insets: micrographs of the particles. (c,d) Viscosity
scale �� defined as a geometric mean of the viscosity in the shear
thickening region. Insets in (c,d): log-log plots of the same data
relative to �c. (e,f) Yield stress �y. Solid triangles: increasing

stress measurements. Open triangles: decreasing stress measure-
ments. Dotted lines: the plateau yield stress �y;max. Inset in (e):

detailed view of the region close to �c. All panels: Solid lines
are power law fits explained in the text; dashed lines are resulting
values of �c.
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from a power law fit of � / ð�c ��Þn to the data in
Figs. 2(a) and 2(b) which gives �c ¼ 0:478� 0:003 and
n ¼ 0:5� 0:2 for starch and�c ¼ 0:564� 0:004 and n ¼
0:5� 0:2 for glass with relative statistical uncertainties.
Power laws shown are fit from �c down to the smallest �
which is consistent with a power law fit. When the lower
end of the fit range of � was increased, fit values of �c

remained consistent within quoted uncertainties; however,
fit values for exponents varied with the fit range, so we do
not claim to have measured limiting scaling exponents with
certainty.

As a second indicator of a transition near �c, we inves-
tigate the evolution of the viscosity magnitude. To this end,
we define a characteristic magnitude �� by the geometric
mean of the viscosity over a fixed stress range in the shear
thickening region: for starch in water we use 500 to
1000 Pa, and for glass spheres in mineral oil 0.3 to 1 Pa.
Figures 2(c) and 2(d) show that �� appears to diverge very
close to the point where � goes to zero. A diverging power
law �� / ð�c ��Þ�n is fit to the data in Figs. 2(c) and 2(d)
which gives �c ¼ 0:488� 0:004 and n ¼ 3:1� 0:3 for
starch and �c ¼ 0:576� 0:004 and n ¼ 1:2� 0:2 for
glass. While the viscosity varies with stress, the fit value
of�c is independent of the fixed stress range chosen for the
fit in the shear thickening region. This divergent scaling is
independent of the yield stress because it is in a much
higher stress range, and is independent of the diverging
slope because that has a mild effect on a fixed stress range.

The yield stress �y for different packing fractions is

shown in Figs. 2(e) and 2(f) and is found to increase
precipitously as the same value �c is approached.
Around �c, the yield stress plateaus at a value �y;max and

does not change significantly at higher packing fractions. A
power law �y / ð�c ��Þ�n is fit to the data in Figs. 2(e)

and 2(f) below the plateau to obtain �c ¼ 0:487� 0:003
and n ¼ 2:5� 0:3 for starch and �c ¼ 0:578� 0:004 for
glass spheres (n could not be fit with any certainty because
the jump in yield stress is so dramatic). Comparison of the

packing fraction dependence of �, ��, and �y in Fig. 2 shows

that, statistically consistent within experimental uncertain-
ties, a single value�c can represent all three parameters for
each of the two suspensions.
From the data in Figs. 1 and 2 we can assemble a phase

diagram that delineates shear thinning, shear thickening,
and jammed regions in a parameter space given by the
applied stress �y and the packing fraction �. Figure 3

shows this for the glass spheres. The jammed region here
is defined as the portion in the diagram below the yield
stress. As in the usual jamming phase diagram [19], ex-
ceeding the yield stress leads to shear thinning flow. For
�<�c, a new feature in Fig. 3 are two boundaries that
extend out from the jammed region to smaller packing
fractions. These boundaries separate shear thickening
from shear thinning regimes. Increasing stress at fixed �
will take a sample from shear thinning to thickening and
back to thinning again, as seen from the slope changes of
�ð _�Þ in Fig. 1. As �c is approached from below, however,
the increasing yield stress pushes both boundaries upward,
forcing them to approach the yield stress line that delin-
eates the jammed region. Once the yield stress dominates
the total stress in the system, the suspension no longer
exhibits shear thickening behavior but only jamming and
shear thinning. Because of the divergent scaling of the
yield stress, this transition occurs at a packing fraction
near to but less than �c. Since the onset stress for shear
thickening (up-pointing triangles in Fig. 3) lies above the
yield line, the shear thickening and jamming regions are
separated by a thin wedge of shear thinning. The conver-
gence of the yield stress and the boundaries between shear
thickening and shear thinning suggests that�c is a singular
point. We name this the dynamic jamming point because it
is analogous to a static jammed state with a yield stress in
the sense that the slope divergence at �c implies the stress
increases without an increase in shear rate, i.e., exhibits a
jump in �ð _�Þ. Furthermore, since the viscosity magnitude
diverges in �c �� and the onset shear stress of the shear
thickening regime is relatively fixed (except for the influ-
ence of the yield stress), the shear rate required for shear
thickening extrapolates to zero at �c. Thus, the discon-
tinuous shear thickening limit corresponds to a jammed
state. We note, however, that the approach to zero onset
shear rate cannot be measured all the way up to�c because
the diverging yield stress suppresses shear thickening be-
fore �c is actually reached. This extrapolation is made
without reference to the yield stress measurements; the
observation that this dynamic jamming point occurs on
the jamming phase boundary confirms the correspondence.
While details differ for cornstarch and glass spheres,

both show qualitatively similar behavior in terms of diver-
gences and the delineation of jammed, shear thickening
and shear thinning regions in Fig. 3. The fact that we
observe this for very different suspensions and measuring
methods suggests this behavior is robust for suspensions of
nonattractive particles. Attractive particles usually do not
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FIG. 3. Dynamic jamming phase diagram for shear thickening
fluids. Data shown are for glass spheres in mineral oil. The solid
line corresponds to the yield stress in Fig. 2(e), while the dotted
lines indicate transitions between shear thinning and thickening.
Solid circle: dynamic jamming point at �c. Open circles: yield
stress. Up-pointing triangles: onset of shear thickening. Down-
pointing triangles: shear thickening maximum.
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shear thicken [2] and can have a jamming point at much
lower packing fractions [28]. We found the boundary
condition to be important as suggested by [13,18]. In the
parallel plate setup, when the experiment was done instead
with extra fluid extending outside the plates, the shear
thickening traces were less steep, and a divergent scaling
of the slope was not achieved. This suggests that confine-
ment (in this case by surface tension) is necessary to
observe the discontinuous shear thickening limit.

Finally, we turn to the significance of the measured
value for �c. Given uncertainty on the order of 0.1 in
determining an absolute packing fraction for starch
samples due to water absorption from the atmosphere
and the internal structure of the starch particles, and given
less knowledge of packing properties of polydisperse pow-
ders [Fig. 2(b) inset], we focus instead on the glass spheres.
Their packing fraction is well defined, and their packing
properties are well studied. We find near identical values
for�c when the fluid is replaced by silicone oil or water, or
when we double the particle size. Thus �c is not deter-
mined by fluid properties or particle diameter but rather is
an issue of geometric packing. For glass spheres, we have
an average value of �c ¼ 0:573� 0:013 including an
absolute error of 0.005. This packing fraction is consistent
with � ¼ 0:57 for mechanically stable packings found by
slowly settling glass spheres with the same density mis-
match in our experiment [29–31]. In the limit of zero
mismatch this would correspond to random loose packing
�rlp ¼ 0:56 [29,30]. Without friction or gravity this would

correspond to random close packing �rcp ¼ 0:64 [21]. If a

mechanically stable packing exists, it must have a yield
normal stress holding itself up against gravity on the order
of ��gd � 10 Pa for a layer d ¼ 0:5 mm thick.
Supposing that the value of the yield stress is on the
same order of magnitude for normal and shear directions,
we expect that the jamming point occurs when the yield
stress crosses this threshold, which is seen in Fig. 3 in the
approach as � ! �c. This agreement confirms that �c

corresponds to the jamming point.
The existence of divergent scalings at a critical packing

fraction is provocatively reminiscent of a 2nd order phase
transition. While the jamming point has been shown to
have similarities to a critical point with some nonuniversal
critical exponents [21], and some scalings compatible with
a 2nd order phase transition [32], we are not aware of any
such model that includes shear thickening.
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