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I. SUPPLEMENTARY INFORMATION

A. Additional experimental details

In the rheometer the torque T on the tool and its ro-
tation ω rate were measured and converted to a shear
stress τ and a shear rate γ̇. Both parallel plate and Cou-
ette geometries were used (for the parallel plate geometry
τ = 2T/(πR3) and γ̇ = Rω/d, where R is the plate ra-
dius and d the gap size). The shear stress and shear
rate describe the mechanical response in a geometry-
independent form, but we do not imply or require a linear
flow profile. Data for Figs. 1 and 3 were taken with in-
creasing controlled stress to resolve the steep shear thick-
ening, while data for Fig. 2 were taken with controlled
shear rate to allow for a better fit of the Herschel-Bulkley
model, Eq. 1. Care was taken that no fluid extended
outside the parallel plates and the particles were con-
fined to the space between the plates by surface tension.
Samples were pre-sheared for 200 s to stresses above the
shear thickening region immediately before experiments
commenced after which measurements were found to be
reproducible within a typical variation of about 10-20%.
Measurements reported were mostly taken at ramp rates
of 500 s per decade of controlled stress or shear rate. In-
creasing as well as decreasing ramps with different ramp
rates were used to check for hysteresis, thixotropy, and
transients. An example comparison of ramp rate and di-
rection dependence is shown in Fig. I.1. Some ramp-rate
independent hysteresis was observed between increasing
and decreasing stress measurements. While the magni-
tude varied from suspension to suspension and typically
about 20% of the viscosity in the shear thickening regime,
the curves were never qualitatively different.
For clarity, the data shown are for one ramp direc-

tion. We checked for reversibility by shearing suspen-
sions in the shear thickening regime and then immedi-
ately ceasing shear; the result was that the stress re-
laxes to the zero-shear limit within seconds. Different
gap sizes between 0.5-1 mm were used to check for fi-
nite size effects. Reported experiments were done with
smooth plates. Rough plates were also used in some ex-
periments to check for slip and no significant differences
were found. Reported packing fractions φ are based on
measured particle and fluid quantities mixed together be-
fore shearing.
To observe the discontinuous viscosity curves as ǫ → 0,

confinement of the sample is important. This can be
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FIG. I.1: Viscosity curves showing an example of hysteresis
and ramp rate dependence for 100 µm glass spheres in min-
eral oil at φ = 0.552. Solid line: 100 measurement points per
decade of stress, 10 s per point. Dotted line: 50 measurement
points per decade of stress, 10 s per point. Upper curves cor-
respond to a decreasing stress ramp. Lower curves correspond
to an increasing stress ramp.

achieved by either using a Couette geometry or avoid-
ing slop in a parallel plate geometry [1, 2]. Non-density
matched samples were measured in a parallel plate geom-
etry to minimize the weight on the packing which pro-
duces a yield stress in a Couette geometry [3]. Attempts
to measure shear thickening of glass spheres in mineral oil
in a Couette geometry resulted in a large yield stress due
to this sedimentation and no shear thickening. This ob-
servation is perfectly consistent with our conclusion that
a yield stress from any source can hide shear thickening.

The glass spheres were obtained from MoSci corpo-
ration (Class IV). They were sieved through mesh sizes
-120+170 and were measured to have a mean diameter of
89 µm with a standard deviation of 12 µm. For the sur-
face tension experiments, the glass spheres were mixed
into water after the surfactant so the total fluid volume
matched that of the case without surfactant. This en-
sured that the surfactant diffused throughout the sample
and the volume fraction did not vary between the two
experiments. These measurements were done with a par-
allel plate setup with a 50 mm diameter rotating top
plate with a 0.83 mm gap.

Cornstarch was chosen as a prototypical shear thick-
ener for the packing fraction dependent experiments.
Argo cornstarch was used at ambient conditions of 23◦C
and 42% humidity which included some water weight.
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The suspensions were density matched for the reported
experiments so that the yield stress in this case was due
to confinement [3]. For the cornstarch data shown we
used a Couette geometry consisting of a 26.6 mm diam-
eter cylinder in a cup with a gap of 1.13 mm. We found
that mismatching the density for starch did not affect
the critical packing fraction because in this case the hy-
drostatic pressure from the weight of the packing is still
much lower than the yield stress above the critical pack-
ing fraction. The same behavior was also obtained in a
parallel plate geometry.

For electrorheology measurements, any dielectric par-
ticle in a non-conducting fluid will work. We used
hydrophobically-coated glass in mineral oil so the
particle-fluid surface tension was minimized. To apply
the dc electric field, 50 mm diameter parallel metal plates
with a gap of 0.88 mm were used as electrodes. The re-
ported electric field value is the applied voltage divided
by the gap size. The rotating upper plate fixture made
electrical contact via a wire brush. This added a constant
friction corresponding to about 0.1 Pa which limited the
stress resolution of those measurements. After subtract-
ing this offset, the data in the limit of vanishing applied
field matched the zero-field value measured without us-
ing the wire brush. Therefore, the stress resolution limit
did not artificially set the measured onset of shear thick-
ening.

Most magnetorheological fluids have a yield stress even
in the absence of a field. To obtain a sample that showed
both shear thickening and a magnetorheological response
we engineered a suspension to minimize particle-fluid sur-
face tension with particles that could be filled with mag-
netic material. To achieve this we used the PRINT R�

process. Typically, the monomer solution was prepared
as follows: 0.30 g of magnetite (black iron oxide, av-
erage particle diameter = 0.2 µm, Polysciences, Inc.),
0.02 g of 1-hydroxycyclohexyl phenyl ketone (HCPK,
Aldrich), and 0.01 g of fluorescein o-acrylate (Aldrich)
were placed into an Eppendorf tube followed by the
addition of 0.1 ml of N,N-dimethylformamide (DMF,
Aldrich). The monomer mixture was then mixed thor-
oughly by vortex mixing to dissolve the HCPK photoini-
tiator and the fluorescein o-acrylate fluorophore. Lastly,
0.67 g of ethoxylated(20) trimethylolpropane triacrylate
(MW = 1176 g/mol, SR415, Sartomer) was added to the
monomer mixture and vortex mixed again. The result-
ing solution was composed of 30% (w/w) magnetite, 67%
(w/w) triacrylate, 2% (w/w) HCPK, and 1% (w/w) flu-
orescein o-acrylate. The rod-shaped particles were then
fabricated using the PRINT process, which has been de-
scribed elsewhere [6, 7]. Molds for fabrication of PRINT
particles were supplied by Liquidia Technologies. For
the magnetorheological experiments, the particles were
suspended in poly(ethylene glycol) dimethyl ether (Mn
= 500 g/mol, Aldrich). These measurements were con-
ducted in a 20 mm diameter parallel plate geometry with
a gap of 0.9 mm. For imaging purposes, DyLight 549
Maleimide (MW = 1007 g/mol, Fisher) was used as the

fluorophore.

B. Yield stress

The yield stress can be defined differently and thus
measured in several different ways. A static or dynamic
yield stress can be measured for either increasing or de-
creasing control ramps, respectively, and each can be
done with either controlled stress or shear rate. In our
experiments, each method yielded similar yield stress val-
ues. Some hysteresis was observed between the static and
dynamic yield stresses, which was larger for faster ramp
rates. At slower ramp rates the hysteresis loops con-
verged to a relatively small difference (less than a factor
of 2). The reported data were taken at ramp rates in this
latter regime.
By defining the viscosity as η ≡ τ/γ̇, it is infinite be-

low the yield stress since the shear rate is zero. Given
that shear thickening requires the viscosity to increase
with stress, η must first drop to finite values, so a viscos-
ity function with a continuous first derivative necessarily
displays shear thinning before entering a shear thicken-
ing region. A different value for the yield stress does not
change this general behavior, but can move the onset of
the shear thickening region. The shear thickening stress
range can therefore depend somewhat on the yield stress
definition, specifically if the lower shear thinning region is
small. For the purposes of comparing shear thinning and
shear thickening stresses to determine the shear thick-
ening regime, the particular criterion for evaluating the
yield stress is irrelevant as long as it is done consistently.
The conclusion that the shear thickening phase bound-
ary is determined by the shear thinning stress does not
depend on which yield stress is measured or any specific
form for the model. We chose the Herschel-Bulkley model
with exponent 1/2 only because it fits the data well (but
see below for other exponents).

C. Connection between particle interactions and

macroscale rheology

The connection between field-induced interparticle at-
tractive forces and the yield stress can be explained
through electrorheology models [8]. In an applied electric
field E the induced dipole moment density scales as βǫ0E
where β is an effective dielectric constant that depends
on particle and fluid dielectric constants and saturates
at values of order unity for all but a near-exact dielec-
tric match. The resulting net force between neighboring
particles scales as F ∼ ǫ0ǫLβ2E2a2 for particle diame-
ter a and liquid dielectric constant ǫL. The yield stress
can be obtained by dividing this attractive force by an
effective particle surface area, giving a yield stress scale
τy = 12πǫ0ǫLβ2E2 [8]. This result is shown in Fig. 2b and
agrees with the measured yield stress at high field values.
Settling becomes more important below the gravitational
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stress scale ∆ρga ≈ 1.5 Pa where ∆ρ is the density differ-
ence and g is the acceleration of gravity. If the attractive
stress is below this scale, particles will tend to settle at
lower shear stresses rather than form chains to jam the
system. This is likely the reason that the yield stress falls
below the E2 scaling at lower field values. The agree-
ment of the yield stress with the attractive stress scale
shows that the yield stress and hence the shear thicken-
ing regime can be connected to individual particle prop-
erties. It is interesting to note that this calculation did
not require any specific knowledge of the flow or packing
structure.
The yield stress scale could be put in terms of the at-

tractive force divided by particle surface area, or equiv-
alently the attractive energy per unit volume. This at-
tractive stress scale can be calculated for other types of
attractions as well to relate the yield stress to microscopic
properties. For example, we can estimate the expected
yield stress from other sources of interactions that might
be operative between cornstarch particles. To check for
this, we used optical tweezers to place two cornstarch
particles next to each other in water and allowed them
to diffuse. An attractive or repulsive potential can be
measured by observing the probability distribution of the
separation distance over time. In the tweezer experiment
the resolution was about 1 pN and down to this instru-
mental limit no attractive or repulsive forces were ob-
served. Dividing this value by particle surface area puts
the upper limit on the yield stress due to attractions at
around 10−2 Pa. This is consistent with the fact that
we did not observe any yield stress in cornstarch suspen-
sions down to our instrument resolution of 10−3 Pa at
low packing fractions.

D. Approximations of the phase boundary

To understand how the lower shear thickening phase
boundary is determined by the shear thinning stress,
we next discuss various approximate solutions based on
Eq. 3. The basic idea is as follows: Given that the shear
thickening stress is independent of the strength of at-
tractions (see Fig. 2) and described by Eq. 2, the phase
boundary can be determined by measuring γ̇m, a2 and ǫ
for zero field, and then calculating τy(B) and a1(B) as a
function of applied field. To check the feasibility of this
approach, we first show that the fit parameters a2 and
ǫ are independent of the applied field. This is done by
fitting the experimental data to Eq. 2 for various field
values, covering a range up to 80% of the shear rate at
the viscosity maximum or up to 3 Hz if there is no max-
imum (this covers roughly the same shear rate range).
The result, shown in Fig. I.2, confirms the claim that the
shear thickening stress is unaffected by (field-induced)
attractions. For brevity, we will show the subsequent
analysis only for the magnetorheology data but it applies
for the electrorheology data as well (the φ dependence is
more complicated because the packing fraction controls
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FIG. I.2: Parameter values obtained from fitting Eq. 2 to the
data on shear thickening with the MR effect. (◦): a2 in units
corresponding to Pa for stress and Hz for shear rate. (•):
1/ǫ. No resolvable trend in either parameter is found as B is
varied.

the shear thickening behavior itself in addition to tuning
the yield stress).
The simplest approximation of the phase boundary is

to assume the discontinuous limit ǫ = 0. When varying
the yield stress via attractive interactions, the fact that
the shear thickening part of τ(γ̇) is steep means the the
onset of shear thickening occurs at a nearly constant γ̇m.
This allows for a simplification since we can approximate
γ̇m in Eq. 3 by its value measured for zero applied field.
This gives τm = τHB(γ̇m) indicating that the stress at
the phase boundary is equal to the shear thinning stress.
We evaluate Eq. 1 using fit values of τy(B) and a1(B) for
each applied field evaluated at γ̇m,0, the measured onset
at zero applied field. This is shown as purple symbols in
Fig. I.3, along with the data from Fig. 4a. This ǫ = 0 ap-
proximation underestimates the onset of shear thickening
by 50± 20% (errors indicate a standard deviation). The
fact that this approximation gives the threshold where
attractions begin to move the onset and the increase in
the onset with field within about a factor of 2 confirms
that the phase boundary is determined by the shear thin-
ning stress.
A better quantitative match to the lower phase bound-

ary can be obtained by accounting for the non-zero ǫ.
The orange symbols in Fig. I.3 are plotted for the same
τy and a1 as before but now using the measured value
of ǫ = 0.55. This increases the predicted τm by a factor
of 1.5. As a result, the measured boundary is underes-
timated by 9± 9% in the low-field region and at higher
fields, where attractions are reducing the shear thicken-
ing regime, by 33±20%. Overall, this better predicts the
point where the attractions are strong enough to increase
the onset of shear thickening but still underestimates the
effect of attractions.
The next correction is to account for the change in γ̇m

with attractions for ǫ > 0. Using techniques similar to
those used in Sec. I F, an exact implicit equation can be
written for γ̇m in a form that shows how γ̇m varies with
ǫ:
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FIG. I.3: Phase diagram showing different approximations
of the shear thickening phase boundary. Lower (�) and up-
per (�) boundaries of the shear thickening regime are as in
Fig. 4a. Purple circles (•): estimate in the limit of ǫ = 0
giving τm = τHB(γ̇m) evaluated at γ̇m,0. Orange circles (•):
estimate accounting for the non-zero ǫ using the measured
value of ǫ = 0.55 in Eq. 3. Open red circles (◦): estimate
further accounting for the change in γ̇m with ǫ and B by eval-
uating Eq. 3 at γ̇m calculated from Eq. I.1. Solid red circles
(•): Eq. 3 at the measured γ̇m. Solid green circles (•): pre-
diction from Eq. 3 at γ̇m calculated from Eq. I.1 using only
data obtained at B = 0 and the lower shear thinning regime
for larger B. Open green circles (◦): evaluating Eq. 3 at γ̇m

calculated from Eq. I.5 with α = 1/2. Dotted green line: fit of
the open green circles indicating the phase boundary between
shear thinning and Newtonian regimes.

γ̇m(B)
2−ǫ

2ǫ = (γ̇m,0)
2−ǫ

2ǫ +
ǫ

2(1− ǫ)a2

�

∆a1(B) +
2τy(B)

�

γ̇m(B)

�

(I.1)
where ∆a1(B) ≡ a1(B) − a1(0). Eq. I.1 reduces to
γ̇m = γ̇m,0 for no attractions [∆a1(B) = 0, τy(B) = 0]
as expected or for step-function stress-shear rate curves
(ǫ = 0) as already claimed, and it justifies the simpli-
fication τm = τHB(γ̇m,0) in the limit of ǫ = 0. Such
constant onset shear rate when the yield stress is varied
in the limit of ǫ = 0 contrasts with the constant onset
stress when the packing fraction is varied (not including
the contribution of the yield stress) [1, 4, 5].
Since Eq. I.1 is an implicit equation, it must be eval-

uated numerically. We note that since the yield stress is
a small contribution to the overall shear thinning stress

as seen in Fig. 4a, i. e. a1γ̇
1/2

m ≫ τy, the rightmost term
with γ̇m(B) in the denominator is small. Starting with
the value of γ̇m(B) = γ̇m,0 on the right hand side, we can
evaluate Eq. I.1 iteratively. The value of γ̇m converges
to within a few percent after only 2 iterations. Thus for
a simple explicit estimate one can set γ̇m(B) = γ̇m,0 on
the right side. This estimate of γ̇m is shown in Fig. I.4
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FIG. I.4: Solid triangles (�): measured shear rate at the onset
of shear thickening γ̇m. Open cirlces (◦): calculated γ̇m from
Eq. I.1.

in comparison to the measured γ̇m. It is seen that the
model captures the increase in γ̇min with attractions, par-
ticularly the point where attractions start to increase γ̇m

which occurs at the same point the stress starts to in-
crease due to the yield stress pushing up the onset of
shear thickening. Beyond that point the model overesti-
mates the measured values by 30± 20%.
We now evaluate Eq. 3 using the calculated value of

γ̇m(B) from Eq. I.1, ǫ = 0.55, and the fit values of τy(B)
and a1(B). This is shown as the open red symbols in
Fig. I.3 (same as in Fig. 4a) and gives the entire phase
boundary within a standard deviation of 28%. For the
packing fraction dependence in Fig. 4c, there is no com-
parable prediction for the onset shear rate because the
shear thickening term varies with packing fraction. Thus
the open red symbols in panel c correspond to Eq. 3 eval-
uated at the smallest measured onset shear rate.
A check on the validity of Eq. 3 for describing the phase

boundary can be made by using the fit parameters τy(B)
and a1(B) and γ̇m(B) measured at the minimum of η(τ).
This is shown as solid red symbols in Fig. I.3 (same as in
Fig. 4a) which agrees with the measured phase boundary
to within a standard deviation of 12%. For comparison,
if we repeat measurements keeping all control parameters
constant, the typical variation in the measured τm is 11%.
Thus, the model is accurate in describing the onset of
shear thickening up to the resolution of the data.
Given the assumptions that the shear thinning and

thickening terms add linearly and the shear thickening
term is independent of attractions, in principle we can
predict the phase boundary using only the shear thick-
ening curve at zero field and the effect of attractions on
τHB . The above analysis was all done using fits of data
up into the shear thickening regime. To show the pre-
dictive power of the model, we now perform the fit to
the data for zero field only to obtain a2, ǫ, and γ̇m,0 and
keep these fixed. We then fit Eq. 2 to data for non-zero
field only up to some cut-off γ̇ < 0.3 which is in the
lower shear thinning region for data with non-zero field.
This allows us to obtain τy and a1. The fitting cutoff
can be chosen based on the zero-field data because the
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attractions always increase the onset of shear thickening.
We then evaluate Eq. 3 using the fit values of τy and a1,
and γ̇m from Eq. I.1. This gives the solid green symbols
shown in Fig. I.3a and b.
This prediction of the phase boundary without using

any data from the shear thickening regime except at zero
field overestimates the phase boundary by 20 ± 60%.
While this agreement is not as good as when we fit the
full data set, it shows that the effect of attractions on
shear thickening can be predicted within about a factor
of two. In the case where packing fraction is varied, the
shear thickening stress itself changes; a2 and ǫ vary with
φ, which shifts γ̇m without the influence of attractions.
Thus either a2 and ǫ, or γ̇m must be obtained as a func-
tion of φ to determine the phase boundary.
A Newtonian regime is sometimes found before the on-

set of shear thickening, for example in Fig. 2a. We did
not explicitly include a Newtonian term in the model.
However, the generalized expression for τm in Eq. I.4 can
apply for a Newtonian stress term when α = 1 (see the
next Section, below). The onset of shear thickening can
still be expressed by τm in Eq. I.4 if a Newtonian stress
term is added to Eq. 2, although the value of γ̇m,0 would
generally increase. We expressed Eq. I.1 in a perturba-
tive form rather than as a simple dependence on the fit
parameters so it still applies in the case where there is a
Newtonian regime whether or not it can be described by
a linear addition to the stress-shear rate relation of Eq. 2.
If instead Eq. I.5 is used for γ̇m without consideration of
a Newtonian regime, the phase boundary would be un-
derestimated for weak attractions (open green symbols in
Fig. I.3). Thus the difference between the open red and
green circles in Fig. I.3 is due to the Newtonian regime.
For simplicity we omitted any Newtonian regime from

the main paper and included it in the shear thinning
regime. This does not change the conclusions but to be
more general we can restate them in a way that includes
the possibility of a Newtonian regime. This regime dis-
appears for stronger attractions when the shear thinning
stress overwhelms the Newtonian stress term. Thus for
shear thickening to occur in general, the shear thicken-
ing stress must overcome the sum of shear thinning and
Newtonian stresses. On the other hand, for attractions to
affect the onset of shear thickening, they must exceed a
threshold equal to the inherent shear thinning and New-
tonian stresses at the onset.

E. Notes on possible mechanisms for shear

thickening

The phenomenological approach presented here does
not address the microscopic origin of shear thickening in
suspensions, but the data put constraints on the region of
validity for existing models. While hydrodynamic models
have successfully described ’continuous’ shear thickening
which occurs at lower packing fractions and higher shear
rates, they have not been able to reproduce the steep

stress/shear-rate relation (ǫ ≈ 0) characteristic of ’dis-
continuous’ shear thickening, instead the smallest value
of ǫ allowed in those models is 1/2 [9]. Inertial granular
models have a similar limitation [10]. In addition, hydro-
dynamic models predict that the shear thickening stress
should be affected by attractions [11, 12]. However, for
’discontinuous’ shear thickening this is not what we ob-
serve.

F. Derivation of Eq. 3

Here we derive an expression for the onset of shear
thickening from τ(γ̇) given in Eq. 2 with a generalized
Herschel-Bulkley form for the shear thinning term τHB =
τy + a1γ̇

α . The onset corresponds to the local viscosity
minimum which satisfies

0 =
dη

dγ̇

�

�

�

�

γ̇m

= −
τy

γ̇2
m

+(α−1)a1γ̇
α−2

m +(1/ǫ−1)a2γ̇
1/ǫ−2

m .

(I.2)
Rearrangement gives

a2γ̇
1/ǫ
m =

ǫ

1− ǫ
[τy + (1− α)a1γ̇

α
m] . (I.3)

Substituting Eq. I.3 into Eq. 2 evaluated at γ̇m gives

τm = τHB(γ̇m) +
ǫ

1− ǫ
[τy + (1 − α)a1γ̇

α
m] . (I.4)

Setting α = 1/2 gives Eq. 3. This shows that in the limit
of ǫ = 0 the onset of shear thickening is equal to τHB(γ̇m)
regardless of the form of the shear thinning term.

G. Derivation of Eq. I.1

Here we derive the expression for the shear rate at the
onset of shear thickening γ̇m, similar to the derivation for
τm(γ̇m). We rearrange Eq. I.2 to get

γ̇
1

ǫ
−α

m =
ǫ

(1− ǫ)a2

�

(1− α)a1 + τyγ̇−α
m

�

. (I.5)

To put this in the form of Eq. I.1 to directly describe
the perturbation in γ̇m with an additional shear thinning
term, we evaluate this for zero additional attractions to
obtain

γ̇
1

ǫ
−α

m,0 =
ǫ

(1 − ǫ)a2

(1− α) (a1 −∆a1) (I.6)

where ∆a1 ≡ a1 − a1,0 and a1,0 is the value of a1 for the
unperturbed state without the additional shear thinning
term. Substituting this back in to Eq. I.5 to eliminate a1

results in
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γ̇
1

ǫ
−α

m = γ̇
1

ǫ
−α

m,0 +
ǫ

(1− ǫ)a2

�

(1 − α)∆a1 + τyγ−α
m

�

. (I.7)

We evaluate this at α = 1/2 to obtain Eq. I.1.
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